Reverse plasticity in single crystal silicon nanospheres
نویسندگان
چکیده
Nanoparticles in the range of 20 to 100 nm in size can be deposited, isolated, and individually probed for their mechanical properties. With a hypersonic plasma particle deposition technique, this has been successfully accomplished for silicon and titanium. We have already shown that silicon nanoparticles are superhard in the 30 to 50 GPa range after work hardening (Gerberich, W.W., Mook, W.M., Perrey, C.R., Carter, C.B., Baskes, M.I., Mukherjee, R., Gidwani, A., Heberlein, J., McMurry, P.H., Girshick, S.L., 2003a. Superhard silicon nanospheres. J. Mech. Phys. Solids 51, 979). At the same time when small nanospheres are compressed, a fraction of the plastic strain is reversed after unloading. Initially, the amount of reverse dislocation motion was small but appeared to accelerate once a threshold strain was reached. The cumulative reverse plastic strain from repeated loading of the same nanosphere appeared to increase from less than 0.04 to approximately 0.4 as cumulative strain increased from 0.2 to 0.6. For large strains then, it appears that a greater amount of plastic strain is recovered after unloading. This can at least partially be understood in terms of the enormous 0749-6419/$ see front matter 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijplas.2005.03.001 * Corresponding author. Tel.: +1 612 625 8548; fax: +1 612 626 7246. E-mail addresses: [email protected] (W.W. Gerberich), [email protected] (W.M. Mook), [email protected] (M.J. Cordill), [email protected] (C.B. Carter), [email protected] (C.R. Perrey), [email protected] (J.V. Heberlein), [email protected] (S.L. Girshick). 2392 W.W. Gerberich et al. / International Journal of Plasticity 21 (2005) 2391–2405 back stress developed at the small scale when dislocations are only a few nm apart. As the ramifications to nanoscopic features on MEMS, micromachines and magnetic recording devices is considerable, it is desirable to understand if a length scale can be developed for such phenomena. In terms of classic dislocation theory an attempt is made. Problems and prospects are discussed with regards to predictive models for hardness and reverse plasticity. 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Converting ceria polyhedral nanoparticles into single-crystal nanospheres.
Ceria nanoparticles are one of the key abrasive materials for chemical-mechanical planarization of advanced integrated circuits. However, ceria nanoparticles synthesized by existing techniques are irregularly faceted, and they scratch the silicon wafers and increase defect concentrations. We developed an approach for large-scale synthesis of single-crystal ceria nanospheres that can reduce the ...
متن کاملHydrothermal synthesis of monodisperse single-crystalline alpha-quartz nanospheres.
Uniformly-sized, single-crystal alpha-quartz nanospheres have been synthesized at 200 °C and 15 atm under continuous stirring starting from uniform, amorphous Stöber silica colloids and using NaCl and alkali hydroxide as mineralizers. Quartz nanosphere size is controlled by the colloid particle size via direct devitrification. Uniform, high-purity nanocrystalline quartz is important for underst...
متن کاملPhase transition plasticity in silicon nanospheres
We present a microscopic description for the response of crystalline Si nanospheres up to 10 nm in radius for various uniaxial compression levels. The behavior at low compressions closely resembles the Hertzian predictions. At higher compressions the creation of a new β-tin phase in the particle core leads to (i) volumetric changes (ii) an increase in elastic moduli, and (iii) significant harde...
متن کاملSemi-insulating behaviour of self-assembled tin(IV)corrole nanospheres.
Three novel tin(iv)corrole complexes have been prepared and characterized by various spectroscopic techniques including single crystal X-ray structural analysis. Packing diagrams of the tin(iv)corroles revealed that corrolato-tin(iv)-chloride molecules are interconnected by intermolecular C-HCl hydrogen bonding interactions. HCl distances are 2.848 Å, 3.051 Å, and 2.915 Å, respectively, for the...
متن کاملNanoindentation of polysilicon and single crystal silicon: Molecular dynamics simulation and experimental validation
This paper presents novel advances in the deformation behaviour of polycrystalline and single crystal silicon using molecular dynamics (MD) simulation and validation of the same via nanoindentation experiments. In order to unravel the mechanism of deformation, four simulations were performed: indentation of a polycrystalline silicon substrate with a (i) Berkovich pyramidal and a (ii) spherical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005